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Abstract

We study the short run impact of weather shocks on local agro-food markets. Weather
variations are accounted for in the formation of traders anticipations on harvest and
future crop availability. We analyze the link between weather anomalies and market ad-
justments through standard rational expectations and commodity price formation theory.
As weather disruptions are not contemporaneous to the ensuing supply shock, there ex-
ist several price impact channels for a climate anomaly to affect market prices. In the
short run, the relevant channel is the update of anticipations regarding future supply. We
present an empirical application on staple crops price variations in India. We exploit the
time lag between a weather shock and the supply shock to identify and estimate price
reactions that are solely due to changes in future price expectations.
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1. Introduction

Weather-driven supply shocks have been among the main driving forces for models of
agricultural prices. A large body of research has empirically established the influence of
weather patterns on crop yields, through the impact of biophysical conditions on plant
growth and labor productivity (Turvey (2001); Schlenker and Roberts (2006); Mainardi
(2011); D’Agostino and Schlenker (2016); Heal and Park (2016)). Similarly, price reac-
tions to supply shocks have been studied at large. The key causal link between weather
and market prices is the impact on crop yields. However, a weather disruption is not
contemporaneous to the ensuing supply shock. This sequential timing implies the exis-
tence of several price impact channels. First, an immediate update of anticipations on
the coming harvest might contemporaneously change market prices. Second, at the time
of realization of harvest, prices will converge to their new equilibrium following the actual
confrontation of supplied volumes to market demand. With well informed agents and
adequate financial tools, the final price clearance might go unnoticed as the adjustment
can gradually take place over the whole period between the initial weather shock and the
harvest. This speculation reduces the annual variance of prices by spreading the effect of
a disturbance over several time periods.

Furthermore, production systems react differently to marginal changes in climatic
context, depending on the technology in use and whether conditions are normal or not
at the time of change. Hence, one ought to see a non linear relationship between weather
shocks and agricultural commodity prices, mirroring the non linear yield functions.

Knowing the most appropriate way to account for weather disruptions in price for-
mation models is particularly useful for studying price shocks transmission at regional
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and global levels. Effective food security design and early warning systems require ade-
quate modeling of repercussions of weather shocks on local prices. Consequently, impact
channels of temperature and precipitation anomalies have been modeled and estimated in
various manners. But modeling assumptions and data constraints often lead to simplify
the way agents react to disruptions and update their beliefs on upcoming harvests. Few
empirical exercises have built on economic theory to study how local market prices react
to abnormal weather shocks. Yet, understanding how weather information is used by
traders is essential to design efficient policy interventions.

In this paper, we explore the role of weather anomalies in the formations of traders
anticipations on harvest and future availability, and the consequences for producer prices.
As traders can observe present weather and biophysical developments and take immediate
action, their weather based predictions on future availability have a direct impact on
contemporaneous prices. Hence, while weather shocks can disrupt future supply, they can
also shift the value of the remainder of past harvests. We draw on intra-annual competitive
storage models, with a distinct treatment of news in the process of adapting expectations
based on updated sets of weather information. We use the theory of competitive storage
to inform the empirical observation of causality relations between weather anomalies and
agricultural commodity prices.

Section 2 reviews previous literature on weather and food prices, section 3 discuss the
competitive storage model and the role of weather news, section 4 presents an application
to the case of Indian producer prices and section 5 concludes.

2. Literature on weather and food prices

Empirical studies. Fresh information on crop prospects is a known driver of market
prices (Summer and Mueller (1989)). And as such, weather shocks generally act as local
supply shifters in price formation models (Jia (2014); Götz et al. (2016)). Hence, the
sensitivity of agricultural prices to weather fluctuation varies with transport costs and the
ability to mitigate production deficits (Burgess and Donaldson (2010); Fox et al. (2011)).
Using a fixed effect approach Deschenes and Greenstone (2007) showed that short-run
variations in weather affect farm’s profitability. The disruptive consequences of weather
extremes on agriculture might also bear consequences on regional conflicts (Klomp and
Bulte (2013); Maystadt and Ecker (2014)). El Nino and La Nina episodes of abnormal sea
temperature and air pressure have been linked to price reactions on international markets
(Algieri (2014)). At the global scale, repeated extreme weather events can have major
adverse consequences across international markets (Piesse and Thirtle (2009); Headey
and Fan (2008)).

Weather shocks can also be analyzed through the lens of futures price theory. Futures
prices reflect agents’ harvest-time price expectations and react to productions forecasts
(McKenzie (2008); Adjemian (2012)). Observing adverse growing conditions, arbitrageurs
with access to a futures market would sell the commodity in the spot market and buy
futures contracts. Hence, spot prices might decline in the short run while futures prices
raise to absorb rainfall or temperature exogenous shocks.(Goodwin and Schnepf (2000);
Goodwin and Ker (2002); Bhanumurthy et al. (2013)).

Competitive storage model . News play an important role in commodity price
formation. In the context we are concerned with, news is any new information carrying
advance knowledge on future production or consumption2, relevant to forward-looking

2Although demand has usual been considered inelastic in this literature, consumption related news
also exert an influence on food prices, as demonstrated for the case of beef (Lloyd et al. (2001, 2006);
Hassouneh et al. (2010)) and poultry (Hassouneh et al. (2012)) markets. Deaton and Laroque (2003)
made an attempt to relax the inelasticity assumption in the long term.
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agents. Access to information has a critical role in agro-food commodity price formation
mechanisms (Jensen (2007); Aker (2010); Goyal (2010)).

In a variant of early competitive storage models, Wright and Williams (1982) intro-
duce a crude representation of weather variation news and other exogenous shocks by
using serially uncorrelated production disturbances, with no distinction between current
and future excess supply or demand. Similarly, changes in the information at hand play
a role in the formation of agents expectations in Deaton and Laroque (1992)’s confronta-
tion of the storage model to historical price series. However the information was solely
made of past availability combined to the future harvest’s i.i.d. probability distribution.
In a refinement of the formation of anticipations, Deaton and Laroque (1996) relaxed
the i.i.d assumption and introduced serially correlated production information. Price ex-
pectations where then built by using current production as a source of information on
future production. But weather news were still not explicitly modeled. Chambers and
Bailey (1996)’s introduction of time dependent equilibrium prices functions allowed for
anticipations to be constructed from periodic conditional expectations, more suited to
model intra annual price variations. Building on this more flexible specification, Osborne
(2004) modeled news and information on approaching harvest in the decision function of
Ethiopian storers. The distinctive features of this iteration of the model are four equilib-
rium price functions, one per season, and conditional expectation of future price based
on cumulative weather information and realized harvest.

3. Theoretical framework : weather news in the Competitive Storage Model

To study the formation of traders anticipations, consider a simple model for commod-
ity prices where risk-neutral inventory holders with access to a perfect capital market,
charging an interest rate r, face a commodity spoilage rate δ, leading to the real cost of
carrying positive cost across time: θ = (1 − δ)/(1 + r) < 1. Every period, traders also
observe the realization of harvests, ht. With the possibility to hold inventory, It, the
available amount of grain in the market at time t is denoted zt = ht + (1 − δ)It−1, and
the commodity price at period pt, must satisfy :

pt = max
[
θEtpt+1, P (zt)

]
(1)

with Et the expectation conditional on information available at t. This equilibrium is
derived from maximizing profits of holding inventory, yt from period t to t+ 1, given by:

[θEtpt+1]It ; It ≥ 0 (2)

This standard decision rule is at the core of the competitive storage model. When
a rational trader expects prices to be high enough, i.e. θEtpt+1 ≥ pt, there is a strictly
positive profit from holding the entire stock until the next period. Hence, traders build
up inventory and price would increase until marginal profit is zero. At this equilib-
rium, traders would stop purchasing and pt equals exactly the expected future price,
θEtpt+1 = pt. Deaton and Laroque (1992) prove the existence of a unique stationary
rational expectation equilibrium (SREE), a function f(zt) = pt that satisfies equation (1)
for all zt. The SREE implies the following:

pt = θEtpt+1 if It > 0 (3)

pt > θEtpt+1 if It = 0 (4)

And a threshold p?, the sock out price, can be identified by finding the minimum price
such that carry over stock is zero. The equilibrium price is therefore shaped by expecta-
tions of the agent, Etpt+1.
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In early standard storage models, anticipations of future price levels are established
with the assumption that agents know the ”amount on hand”, this information is ht +
(1 − δ)It−1, the current harvest together with any inventories from the previous period
net of costs, denoted by zt. With harvest considered i.i.d, the only varying source of
information is the result of previous storage decisions, such that expectations are of the
form Et[pt+1|It−1] and traders cannot any other type of news to infer future availability.
To better accommodate observed price autocorrelation in the data, Deaton and Laroque
(1996) refines the information available to agents at time t by relaxing the i.i.d assump-
tion and modeling autocorrelated harvests. With the probability distribution of next
period harvest disturbance depending on present disturbance, the amount produced each
period carries information on future levels of supply. This form of news plays a role in
calculating expected future prices and thus the demand for current inventories. With
autocorrelated harvests, the expected price function becomes Et[pt+1|It−1, ht]. Along
these lines, Chambers and Bailey (1996) introduced a time dependent version of the equi-
librium price with harvest probability distributions changing across production cycles.
With Et[pt+1|It−1, ht, k] for k = 1, ..,K, prices are modeled across a K parts seasonal
cycle with a prices equilibrium function for each season. This significant extension of the
model opened the possibility of accounting for intra-annual dynamics. The influence of
new information on harvest and stocks could then vary across different times of the year.
In their version of the model, Peterson and Tomek (2005) use a random walk to define
the information set on expected crop supply used by traders to form anticipations during
the months between planting and harvest.

The impact of weather related news is particularly important during the months of
crop growth preceding harvest, when stocks are at their annual low and market is thinner.
A quarterly version of the model would therefore feature four equilibrium price functions,
each one supporting the formation of expectations with a different probability distribution
of yields. With a seasonal distribution of harvest over 4 periods and conditional expec-
tations augmented with weather information, Osborne (2004) shows that, in Ethiopia, a
large proportion of the production information is known before the harvest itself, through
the observation of rainfall. With one harvest cycle and four seasons s, this model of price
expectation formation augmented with rainfall information takes the form of

Et[pt+1|It−1, ht, st, Vt] with st ∈ [1, .., 4] (5)

where Vt is a vector denoting information on future harvest available in t. Considering
that It−1 and ht might be retrieved from the news information set, the expected price
function with weather news as a source of advance information can be written as

pt+1 = ft+1 = f(st, zt(pt, Vt(x, ρ̃)), Vt+1(x, ρ̃); γ̃) (6)

where x represents all relevant rainfall observations for the given production season and
period. V are information states depending on rainfall and the standard deviations of
news, ρ̃, which express the uncertainty of future harvest . γ̃ is a vector of structural
parameters including demand elasticity, interest rate, storage cost and production cycle
index. The key parts of anticipation formation mechanism are therefore the combinations
of news in V and the treatment of the output of V in f . The specificity of these functions
were not explored in depth in Osborne (2004), aside from the normality requirement for
the distribution of news and the regularity and compactness of V .

To refine the modeling of the role of weather news in local traders’ price expectation
formation, we build on the specification of Osborne (2004). We introduce several points
from the rational expectation theory as well as biophysical characteristics of production
systems to inform how weather news enter the anticipation mechanism and uncover the
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Figure 1: Timing of the price expectation updating process

short run sensitivity of local markets to various shocks.

Agents are forward looking, with a strategy selection based not on experience mea-
sured by relative past realized profits, but on a maximization of expected future profits.
However their forward looking behavior is boundedly rational, as only past information
on weather variability, specific to the agent’s geographic localisation, is used to con-
struct their expectation of future crop availability. Hence, for each period t, a weather
anomaly from traders’ perspective is defined based on a normal long term level obtained
from weather realizations pre-dating t. As production and marketing systems evolve over
time, expectations formation might adapt to new conditions and experience gathered by
agents over their careers (Muth (1961); Böhm and Chiarella (2005)). A common approach
is to construct anomalies with respect to a 10 years rolling window of average standard
conditions prevailing in the concerned production area monitored by the agents. Me-
teorological information systems often disseminate real-time measurement together with
long run normal conditions. The way expectations are formed specifically depends on
the structure of the relevant systems. Traders use information to predict which distribu-
tion of yields will prevail at harvest time, based on their knowledge of the link between
weather and growing conditions. When conducting this forecasting exercise, they know
that the directions and amplitude of a weather variation bear different impact on crops.
Quadratic functions can introduce non linearity in price reactions to mirror biophysical
links. Yet the temperature and yield relationship is highly asymmetric. Temperatures
above the optimal thresholds have roughly 10 times worse consequences on yields than a
similar negative deviation (Schlenker and Roberts (2009)). The equilibrium price relation
to weather would then feature non linear conditionality and asymmetric critical turning
points. Furthermore, producers can accommodate to a certain extent early rains or a
delayed start of the season. Therefore, cumulative level of weather parameters over a
season might be more important that one specific week’s conditions. Consequently, price
expectations are gradually updated based on the strengthening of an incomplete informa-
tion set made of weather observations, until the information is complete and the supply
arrives on the market (a feature already introduced by Osborne (2004)).

Similar to Osborne (2004), the resulting reduced form price formation model may be
written as :

pt+1 = F (pt, st, x; ρ, γ) + εt+1 (7)

4. Empirical application: Rice and Wheat prices in India

In this section we examine the role of weather shocks in Indian local spot price for-
mation process by estimating the contemporaneous impact of weather anomalies in local
market prices. We use a reduced form of the price formation model laid out in section 3,
estimated for primary wholesale prices of key crops.
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4.1. Context and data

The Indian climate is particularly heterogeneous throughout the country. Annual
rainfall vary from a few centimeters in dry states, like Rajasthan, to several hundred
centimeters in the northeastern states. The temperature distribution also features con-
siderable regional differences. However, a seasonal cycle drives agricultural activities
across the whole the country. India knows two main harvest seasons Rabi (Winter) and
Kharif (Autumn, after the summer monsoon). Some States benefit from Rabi rainfalls
while others have dry winters (see figure 9). Northern states make intense use of irriga-
tion, especially during the Rabi months, whereas Rain-fed agriculture is more prevalent
in the south. Monsoon typically starts in June and reaches its peak in August, but the
rainfall might last longer in some States, especially the ones on the east coast (see figure
8). Kharif season crops include rice, millet, sorghum, maize, gram (chickpea) and pi-
geonpea, grown between June and September and harvested in OctoberNovember. Rabi
production typically includes wheat, barley and masur lentils, planted after the summer
monsoon and harvested at the end of the spring, but chickpea can also be grown during
the wet winter of some southern states.

Both inter-annual and long-term climate variability affect food production in India
(Guiteras (2009); Preethi and Revadekar (2013)). The relationship between weather
and crop yields has been studied, among others, by Guhathakurta and Rajeevan (2008);
Barnwal and Kotani (2013); Birthal et al. (2014b,a, 2015); Pattanayak and Kumar (2014);
Dkhar et al. (2017); Mishra et al. (2017). Climatic variables significantly drives the
yield distribution and features considerable non linearity. The resulting impact of a
weather anomaly depends on the type of soils, on agroclimatic zones and on seasonality.
Kharif crops are more sensitive to temperature and precipitation, whereas Rabi crops
remain more resilient to changes in precipitation levels. Temperature is most important
to winter crops which rely on irrigation (Mondal et al. (2015)). Extreme heat affects cereal
crops growth and might trigger senescence onsets, leading to lower yields Lobell et al.
(2012) . While crop production is strongly influenced by the summer monsoon rainfall,
event the post post-monsoon winter cropping season depends on summer rains through
replenishment of on ground water stocks needed for irrigation (Kumar and Parikh (2001);
Krishna Kumar et al. (2004); Das et al. (2014)).

Auffhammer et al. (2012) found non linear relationship between weather and Indian
yields as the negative impact of reduced rainfall is amplified when rainfall is very low
(drought), and the positive of impact of higher rainfall reversed sign and becomes nega-
tive when the increase generates extreme rainfall. They found that nonlinearity related
to drought was much more important than the one related to extreme rainfall.

The Indian marketing system is built on a physical and legal framework facilitating
trade, storage and processing of a large share of the agricultural produce. Wholesale
markets might be labeled as primary, secondary or terminal, according to the volumes of
trade and the type of participants. We focus on primary wholesale market yards, which
are closest to producers. These market yards (mandis) are designated and operated under
the supervisions of market committees, made of members of producer’s cooperatives and
civil servants. Producers and aggregators are matched with bidders in organized auctions.
Bidders are traders, processors, and during a few month per year, public procurement
agencies.

Every day, market operators record the minimum, maximum, and modal transac-
tion prices and send the data to the AgMarkNet price information portal. We construct
monthly district averages of daily market modal prices of maize rice and wheat during
their respective growing seasons. In some mandis from remote area or low producing
districts trade only takes place after harvest, during a few months of the year. In other
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mandis trade might happen all year long. We focus on markets which trade during the
growing season of each respective crop, to study their price reaction to a weather anomaly.

Table 1: Data sources

Item Temporal
resolution

Spatial
Resolution

Source

Precipitation &
temperature

Monthly
1980-2017

0.5x0.625 NASA/MERRA2

SPEI Monthly
1980-2016

0.5x0.5 University of East Anglia (Begueŕıa
et al. (2014)).

Producer
prices

Daily 2003-
2017

Market AgMarkNet, primary wholesale mar-
kets for medium to large producers,
and aggregators.

4.2. Empirical implementation

To estimate the relationship between weather variations and prices, we follow two dif-
ferent approaches. First we estimate the contemporaneous and lagged impact of specific
anomalies in climatic variables and events susceptible to affect yields and therefore be
monitored by traders. Second, we attempt to estimate the full price reaction functions to
temperature and rainfall by regressing discrete intervals of weather variables realizations
on prices. Binning the data provides a simple way to uncover the asymmetry and non
linearity of weather variations in the price expectation mechanism. In both approaches,
we exploit the time lag between a weather shock and the ensuing supply shock to identify
and estimate price reactions that are solely due to a change in future price expectations.

In our first approach, a set of estimations are obtained be regressing price levels, pt,
on specific weather anomalies:

pd,t = β0 + β′1W̄d,t + φd + ψm,s + τy,s + ηd,t (8)

where W̄d,t is a series of i weather variables for district d. The equation is estimated
for the vector of weather conditions constituted of monthly district rainfalls and tem-
peratures. Another sets of estimations is obtained with different measures of weather
anomalies captured by the SPEI or deviations from long term averages. Each equations
include fixed effect for districts (φd), year-states(τy,s), a state specific monthly seasonal
cycle (ψm,s) with m= 1, .., 11, and an error term, ηd,t. The interest rate and storage loss
parameters from our structural model described in section 3 are absorbed by the time and
district fixed effects. Similarly, idiosyncratic local shocks and government interventions
such as the recommended Minimum Support Price and related procurement decisions
are captured by state-year fixed effects. District characteristics that do not change ev-
ery month such as irrigation technology, storage facilities, infrastructures and soil quality
fixed effects, thus offsetting potential sources of omitted variable bias.

Measures of deviation are based on the information available to market players at time
t. Anomalies are calculated for each t based solely on long term mean or reference values
pre-dating t, as that is what traders base their knowledge on. To construct district spe-
cific monthly time series from 1990 to 2018, we sum pixels within the spatial boundaries
of each district, for all weather variables. Cumulative rainfall from and tally of degrees
are also calculated for every year. Then, for each weather variable i, we construct 10
years moving averages to establish benchmark levels, X̄i,t, weighted with exponentially
decreasing weights such that recent years have stronger weights. The anomalies variables
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are defined as the percentage deviation from the 10 years rolling benchmarks:
xi,t−X̄i,t

X̄i,t
.

For our second approach, rainfall and temperature deviations from long term averages
are allocated to bins of fixed width with respect to their distribution. In other words the
realized outcome distribution of each variable is divided in 40 sections of 2.5% length.

With the assumption that the short run price formation process is a combination of
non linear functions of observed weather, g(RAIN) and m(TMP ), we re-write equation
7 for district d at time t as:

pd,t =

∫
g(RAIN)Θ(RAIN) +

∫
m(TMP )Θ(TMP ) + φd + ψm + τy,s + ηd,t (9)

where Θ(RAIN) and Θ(TMP ) are the distribution of anomalies within our dataset. In
order to estimate the form of g() and m(), we discretize the price interval over rainfall
and temperature anomalies with fixed width bins, each of which the relationship to prices
will be jointly estimated:

pt,d = β0 +

Brain∑
q=1

β1
qRAINq,d,t +

Btmp∑
q=1

β2
qTMPq,d,t + φd + ψm + τy,s + ηd,t (10)

For each set of bins, the bin that includes zero, the no-deviation interval, is treated
as the omitted reference category.

4.3. Results

We start our empirical exploration by examining short run price reactions to weather
anomalies as captured by the SPEI and deviations from long term rainfall and temperature
levels.

Table 2: Regression results: SPEI

Log(Wheat Prices) Log(Rice Prices) Log(Maize Prices)

(1) (2) (3) (4) (5) (6)

SPEIt .007∗∗∗ .008∗∗∗ .004∗∗ .005∗∗ .009∗∗∗ .010∗∗∗

(.001) (.001) (.002) (.002) (.002) (.002)
SPEI2t −.002∗∗ −.003∗∗ −.001 −.002 −.003∗ −.004∗∗

(.001) (.001) (.002) (.002) (.002) (.002)
SPEIt−1 −.001 −.001 .003

(.001) (.002) (.002)
SPEI2t−1 −.007∗∗∗ .003∗ −.006∗∗∗

(.001) (.002) (.002)

Month-State FE Yes Yes Yes Yes Yes Yes
Year-State FE Yes Yes Yes Yes Yes Yes

Observations 10,519 8,970 8,278 7,815 6,921 6,564
R2 .878 .844 .857 .850 .829 .810
Adjusted R2 .872 .836 .846 .838 .814 .793

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Regression results suggest that prices of wheat, rice and maize react positively and
contemporaneously to a precipitation anomaly captured by the SPEI (table 2). The re-
action also shows signs of non linearity, as quadratic terms indicate that after a certain
level of disruption, price reactions will falter.

In our second set of results (table 3) we study the impact of marginal changes contem-
poraneous and lagged rainfall and temperature levels on prices, after having controlled
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for seasonality and time invariant characteristics. This second sets of results indicate an
immediate but modest price reaction to marginal changes and short run anomalies in cli-
matic conditions. For each time frames and commodities, the signs of level and quadratic
coefficients suggest a reaction functions that looses momentum when marginal changes
reach high proportions.

Marginal changes in precipitations matter for all commodities but are seen positively
only for rice as wetter growing conditions seem to have a price reduction effect, with a
one month lag.

The direction of reactions to temperature deviations for rice and maize suggest a price
reduction through anticipations of better growth but not for wheat, grown in colder con-
ditions and more dependent on irrigation.

The negative coefficients of positive rainfall deviations for rice hint that wetter grow-
ing conditions would been seen by the market as beneficial for future yields. Whereas it
is the opposite for the two other crops.

Table 3: Regression Results - Rainfall and temperature

Log(Wheat Prices) Log(Rice Prices) Log(Maize Prices)

(1) (2) (3) (4) (5) (6)

Rainfall variables
RAINt .0001∗∗∗ .0001∗∗∗ −.00001 −.00001 .00003∗∗ .00002

(.00001) (.00001) (.00001) (.00001) (.00001) (.00001)
RAIN2

t −.00000∗∗∗ −.00000∗∗∗ .000 .000 −.000 −.000
(.000) (.000) (.000) (.000) (.000) (.000)

RAINt−1 −.00002 −.00001 −.00002∗∗∗ −.00003∗∗∗ −.00000 −.00000
(.00001) (.00002) (.00001) (.00001) (.00001) (.00001)

RAIN2
t−1 .00000 .000 .000∗∗∗ .000∗∗∗ −.000 −.000

(.00000) (.00000) (.000) (.000) (.000) (.000)
Temperature variables
TMPt .006∗∗ .013∗∗∗ −.043∗∗∗ −.043∗∗ −.053∗∗∗ −.049∗∗∗

(.003) (.003) (.016) (.018) (.018) (.019)
TMP 2

t −.0001∗∗∗ −.0003∗∗∗ .001∗∗ .001∗∗ .001∗∗∗ .001∗∗∗

(.0001) (.0001) (.0003) (.0003) (.0003) (.0003)
TMPt−1 .009∗∗∗ .006∗ .025 .028 −.092∗∗∗ −.096∗∗∗

(.003) (.003) (.016) (.017) (.016) (.017)
TMP 2

t−1 −.0001∗∗ −.0001 −.0005∗ −.001∗ .001∗∗∗ .001∗∗∗

(.0001) (.0001) (.0002) (.0003) (.0003) (.0003)
Standardized precipitation and evapotranspiration index
SPEIt .004∗∗∗ .004∗ .007∗∗∗

(.001) (.002) (.002)
SPEI2t −.001 −.001 −.003∗

(.001) (.002) (.002)

Observations 10,391 9,465 9,630 8,151 7,534 6,824
R2 .887 .876 .875 .854 .844 .827
Adjusted R2 .882 .869 .866 .843 .831 .811

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 - Year and seasonal cycles state specific fixed effects included in all regressions.

For the second part of our analysis we plot the regression results of equation (10). In
figures 2 to 5, price reactions associated to each interval of weather anomaly are presented
with a 95% confidence interval (black lines passing through each point; clustered at dis-
trict level). To facilitate reading and reconstitute the full price function, we connect the
different levels of reaction with a local polynomial regression. The upper panel always
features reactions to rainfall anomalies and the lower panel plots the temperature im-
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pacts. For each figure, all coefficients are jointly estimated to account for the interaction
between precipitation and temperature as well as the time dimension. Blue panels present
regressions of anomalies in cumulative parameters while yellow ones assemble coefficients
of anomalies realized temperature or precipitation in a given month.

For rice, we find that a rainfall deficit of 80% below long term levels in a given month
increases prices of about 5%. Cumulative temperature deficits can be much more disrup-
tive as episodes colder than 7% below normal conditions can lead to a 40% price increase.
Very warm episodes, at the other tail of the anomaly distribution, might reduce prices by
20%.

Small rainfall deficits over time slightly increase wheat prices, as captured by coef-
ficients of deviations from long term cumulative precipitations. Price do not exhibit a
strong reaction to cumulative precipitations higher than the long term average, except
during extreme episodes during which prices immediately increase by up to 2%. However,
cumulative temperatures warmer than usual lead to lower wheat prices, counterbalanced
by adjustment in the following period, while extreme cold episodes lead to a price increase
in the same month.

Results for maize are less pronounced. Coefficients indicate with that small anoma-
lies do not trigger price movements but reactions to stronger anomalies are much more
uncertain, as indicated by wider confidence intervals.

A common feature of the estimations for all crops is an absence of immediate price
reaction to small anomalies close to 0. And long term average of climate variables, the 0,
is an inflection point for most of the price reaction functions.
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Figure 2: Wheat price reactions to rainfall and temperature anomalies: Wheat price do not
seem to strongly react to abnormal precipitation levels. Although a 50% rainfall increase might reduce
price by about 3% after one month. Only temperature anomalies above 7% lead to a significant price
increase, also after one month.
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Figure 3: Wheat price reactions to anomalies in cumulative rainfall and cumulative temper-
ature: Rainfall deficit increase prices (upper panel). Price do no exhibit a strong reaction to cumulative
precipitations deviations from the long term average. During extreme temperature episodes prices im-
mediately decrease by up to 2%, but only to be compensated by the opposit moment the next month.
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Figure 4: Rice price reactions to rainfall and temperature anomalies: Rice prices do not exhibit
a significant immediate price reaction to small precipitation or temperature anomalies. However, extreme
rainfal deficit lead to a immediate 6% price increase and cold spells of 10% and more below average can
increase prices between 10 and 15%.
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Figure 5: Rice price reactions to cumulative rainfall and cumulative temperature anomalies:
Rainfall deficit of 80% below long term levels increase prices of about 5% (upper panel). Cumulative
temperature deficits can be much more disruptive as episodes colder than 7% below normal conditions
can lead to a 40% price increase. Very warm episodes at the other tail of the anomaly distribution might
reduce prices by 20% (lower panel).
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Figure 6: Maize price reactions to rainfall and temperature anomalies: Results do not suggest
conclusive evidence of maize price reaction to anomalies
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Figure 7: Maize price reactions to anomalies in cumulative rainfall and cumulative temper-
atures : Results do not suggest conclusive evidence of maize price reaction to anomalies. Note: one
confidence interval for a temperature bin is omitted for exposition purpose due to its wide size.
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5. Conclusion

This papers presents an approach to model the impact of weather anomalies on agri-
cultural markets. We propose a theoretical framework drawing from the competitive
storage model to analyze short run price reaction to weather disruptions. Results from
the empirical application confirms that market prices react to weather shocks in a non
linear fashion. The main source of non linearity is the non linear and asymmetric impact
of climate on yields. This complex process is reflected in the way agents update their
anticipations on future harvest and affects their decisions trading decisions.

A weather disruption is often not contemporaneous to the ensuing supply shock. Con-
sequently, there exist several interlinked channels for impact on prices. First, the update
of anticipations on future harvest causes the market valuation of the remained of past
harvest to change. Second the market clearance, when harvest confronts demand. The
first channel is important and deserves detailed analysis of the beliefs and anticipations
of market players. Further, the timing dimension matters as results suggest that, after
an initial reaction, prices follow a gradual update process during the growing season.

A defining characteristic of the binned regressions is that all price expectations re-
action functions feature a turning point in zero. Reaction differs in adverse/favorable
conditions and the intensity of the shock matters. Shocks in the tail of the distribution
of weather conditions have a stronger impact on expectations than those in the center,
closer to long term averages.

References

Adjemian, M.K., 2012. Quantifying the wasde announcement effect. American Journal
of Agricultural Economics 94, 238–256.

Aker, J.C., 2010. Information from markets near and far: Mobile phones and agricultural
markets in niger. American Economic Journal: Applied Economics 2, 46–59.

Algieri, B., 2014. A roller coaster ride: an empirical investigation of the main drivers of
the international wheat price. Agricultural economics 45, 459–475.

Auffhammer, M., Ramanathan, V., Vincent, J.R., 2012. Climate change, the monsoon,
and rice yield in india. Climatic Change 111, 411–424.

Barnwal, P., Kotani, K., 2013. Climatic impacts across agricultural crop yield distri-
butions: An application of quantile regression on rice crops in andhra pradesh, india.
Ecological Economics 87, 95–109.
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Annex

In February and March 2002, a precipitation anomaly watered the State of Uttar
Pradesh up to an average of 117% more than the long term average rainfall (see figure
11).

In July and August of 2002, northern Indian States such as Rajasthan, Punjab and
Haryana received significantly less rainfall that usual. In August 2005, such an anomaly
took place also in Uttar Pradesh with a 48% precipitation deficit that month (see figure
??).
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Figure 8: Monsoon timing in selected States.

Figure 9: District level cumulative rainfall patterns in selected States (1990-2017)

In the third set of regressions, (see table 4), we focus on the non linear and asymmetric
features of the reaction function to rainfall and temperature anomalies. Rainfall anomalies
have a non linear impact on prices as indicated by the opposite coefficient of quadratic
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Figure 10: Crop calendar (FAO)

Figure 11: February - March & July - August rainfall in selected years.

terms. But the effect of rainfall deficits (negative shocks) and surplus (positive shocks) is
heterogeneous across the three commodities.

22



Table 4: Regression Results- Anomalies

Log(Wheat Prices) Log(Rice Prices) Log(Maize Prices)

(1) (2) (3) (4) (5) (6)

+RAINdevt .00001 .0001∗∗ .00001
(.00001) (.00004) (.00004)

−RAINdevt .0001∗∗∗ −.0002∗∗∗ .0003∗∗∗

(.00003) (.0001) (.0001)
+TMPdevt −.001∗∗ .0001 .001

(.0003) (.001) (.001)
−TMPdevt .001∗∗∗ −.004∗∗∗ −.001

(.0003) (.001) (.001)
RAINdevt .0001∗∗∗ −.0001∗∗ .0001∗∗∗

(.00001) (.00004) (.00004)
RAINdev2t −0.00000∗∗∗ 0.00000∗∗∗ −0.00000∗∗

(0.00000) (0.00000) (0.00000)
TMPdevt .0002 −.002∗∗∗ .0001

(.0002) (.001) (.001)
TMPdev2t −.00001 .0003∗∗∗ −0.00000

(.00001) (.0001) (.0001)

Month-State FE Yes Yes Yes Yes Yes Yes
Year-State FE Yes Yes Yes Yes Yes Yes

Observations 11,628 11,628 9,757 9,757 7,631 7,631
R2 .890 .890 .878 .878 .846 .846
Adjusted R2 .885 .885 .869 .869 .833 .833

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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