Local-average games

• This paper considers a tax evasion game between \(n > 1 \) individuals and the tax authority, who seeks to maximize the aggregate fiscal revenues collected from individual tax payments.

• It is assumed that taxpayer communication happens truthfully and voluntarily (Andrei et al., 2014), and where individuals assimilate the average value of the new information received from their neighbors (Hokamp & Pickhardt, 2010).

• The presence of social interactions leads taxpayers to experience peer effects (Fortin et al., 2007; Alm et al., 2017).

• The local-average or linear-in-means model is the workhorse model in empirical work on peer effects (Blume et al., 2015; Kline & Tamer, 2019; Ushchev & Zenou, 2020).
Taxpayer network g

- Consider \mathcal{N} a set of $n > 1$ taxpayers which coexist in a connected network g, with a $n \times n$ adjacency matrix $H = [h_{i,j}]$ with entries $\{0, 1\}$, where $h_{i,j} = 1$ if and only if there is a direct connection between agents i and j; otherwise $h_{i,j} = 0$.
 - The network is undirected and does not include any self-loops.
 - We say two agents or taxpayers are ‘neighbors’ if they share a direct link between each other.

- Define $G = [g_{i,j}]$ with entries $[g_{i,j}] \in [0, 1]$ as the $n \times n$ row-normalized adjacency matrix obtained from diving each entry of matrix H by the degree of node i. Hence, $[g_{i,j}] = [h_{i,j}]/N_i$, where N_i represents the node-degree of taxpayer i.
 - One can interpret the value of $[g_{i,j}]$ as the influence which agent j exerts on agent i, in the sense of Degroot (1974).
Local-average games: utility function

- Local-average games (Blume et al., 2015; Kline & Tamer, 2019) have a linear-quadratic utility function of the form:

\[
U_i(x_i, x_{-i}, g) = \alpha_i x_i - \frac{1}{2} x_i^2 - \frac{\theta}{2} (x_i - \bar{x}_i)^2, \tag{1}
\]

- \(x_i\) is the outcome (e.g. tax payment) exerted by agent \(i\),
- \(x_{-i}\) is the vector of outcomes exerted by all other players,
- \(g\) is the social network,
- \(\alpha_i > 0\) is an individual *productivity* parameter,
- \(\theta\) is the *social interaction effect* which measures an agent’s reaction to the average outcome of its neighbors (e.g. *alla romana*).
- \(\bar{x}_i\) is the individual-specific *social norm*, defined as the average outcome exerted by agent \(i\)’s neighbors weighted by the influence exerted by each player \(j \neq i\) on taxpayer \(i\). Namely:

\[
\bar{x}_i = \sum_{j=1}^{n} g_{ij} x_j. \tag{2}
\]
A quick look from the taxpayer’s perspective

• Assume a taxpayer’s value function (or expected utility) is:

\[V = \hat{p} \cdot \nu(\text{audited}) + (1 - \hat{p}) \cdot \nu(\text{not audited}). \]

\[(3) \]

• The generalized taxpayer’s problem is to maximize the value function \(V \) in terms of the payoffs \(\nu \) of being audited or not:

\[\max_{\{d\}} V(\hat{p}, d, I, \tau, \phi, \cdot) \]

\[(4) \]

where agents optimize only over the declared income \(d \). Notice that the subjective audit rate \(\hat{p} \) is endogenous; while income, taxes, penalties and most other parameters are exogenous.

• A higher perceived audit rate, \textit{ceteris paribus}, would induce taxpayers to be more compliant (Casal & Mittone, 2016).

 • Optimal \(d \) is (weakly) \textbf{increasing with respect to} \(\hat{p} \).
 • Hence, tax payments \((x_i) \propto\) declared income \((d_i) \propto \hat{p}_i\).
Mathematically equivalent problems

- Define individual tax payments as \(x_i := d_i l_t \tau \)
 - \(d_i \) is the individual fraction of income disclosed,
 - \(l_i \) is the taxpayer’s exogenous given income,
 - \(\tau \) is the societal tax rate (flat or stepped).

Claim (1)

From the point of view of the tax authority, in a local-average game, the two problems are mathematically equivalent:

\[
\text{argmax}_A \ e^\top x = \text{argmax}_A \ \frac{1}{n} e^\top \hat{p},
\]

where \(A \) is the set of possible actions of the tax authority (e.g. audit probabilities, sequence of audits, targeted audits, etc.).

\(x := (x_1, x_2, \ldots, x_n)^\top \in \mathbb{R}_+^n \) is the vector of tax payments and \(\hat{p} := (\hat{p}_1, \hat{p}_2, \ldots, \hat{p}_n)^\top \) is the vector of subjective audit rates of all players in network \(g \), and \(e \in \mathbb{R}^n \) is a column-vector of ones.
Local-average games: Nash Equilibrium

• We redefine the local-average game in terms of \hat{p}_i as:

$$U_i(\hat{p}_i, \hat{p}_{-i}, \varphi) = \alpha_i \hat{p}_i - \frac{1}{2} \hat{p}_i^2 - \frac{1}{2} \left(\frac{\lambda}{1 - \lambda} \right) (\hat{p}_i - \bar{\hat{p}}_i)^2,$$

(5)

• where $\theta = \frac{\lambda}{1 - \lambda}$ and $0 < \lambda < 1$.

• The best-reply function for each taxpayer i is given by:

$$\hat{p}_i = (1 - \lambda)\alpha_i + \lambda \bar{\hat{p}}_i,$$

(6)

Proposition (1)

Solving for \hat{p} the Nash Equilibrium (\hat{p}^*) is defined by:

$$\hat{p}^* = (1 - \lambda)[I - \lambda G]^{-1}\alpha.$$
Local-average games: Heterogeneity

Proposition (2)

The matrix $M := (1 - \lambda)[I - \lambda G]^{-1}$ is well-defined and row-normalized for any $\lambda \in (0, 1)$. Hence one has: $\hat{p}^* = M\alpha$.

Proposition (3)

Since G is a row-normalized adjacency matrix, the Nash Equilibrium exists, is unique and is interior for any $\lambda \in (0, 1)$.

Claim (2)

If individuals are ex ante homogeneous, that is if $\alpha_i = \alpha_j$ for all $\{i, j\} \in \{1, 2, ..., n\}$, then the aggregate and individual Nash Equilibrium outcome levels will be independent of the network structure, rendering network-based policies useless.
Threat-to-audit message

- Threat-to-audit messages can affect taxpayer behavior (Boning et al., 2018; Lopez-Luzuriaga & Scartascini, 2019).

Tax authority’s message:

Dear citizen,

A new audit regime is in place. Last year the societal audit probability was of p and equal for all taxpayers. As of now, the probability of being audited will be proportional to the income level of each taxpayer. Hence, the individual-specific audit rate for each taxpayer i is now defined as:

$$p_i = p \cdot \frac{l_i}{\sum_{j=1}^{n} l_j} \cdot n,$$

(7)

where p is the homogeneous true audit rate from last year, l_i denotes the gross earned income of taxpayer i, n is the total number of individuals in the society, and $p_i \in [0, 1]$ for all $i \in \{1, 2, ..., n\}$.

- The average and aggregate probabilities have not changed, just shifted.
Ensuring taxpayer *productivity* heterogeneity

- Following the threat-to-audit message, taxpayers compute their income heterogeneity with respect to society.

- Let α_i be determined by an agent’s income divided by the average income of all the agents in the network. The value of such individual-specific heterogeneity level α_i is defined as:

$$\alpha_i = \frac{l_i}{\sum_{j=1}^{n} l_j} \cdot n$$ \hspace{1cm} (8)

- The interpretation of α_i would be a taxpayer’s exogenous-given income *productivity* with respect to society.
 - E.g. if j’s income is twice the average income level, then $a_j = 2$.

- Averaging on both sides, it is easy to see that the average and aggregate productivity in the network have not been modified.
Subjective probability of being audited

- Individual **belief dynamics in tax compliance** are strongly path-dependent with respect to the average past behavior of other players (Alm et al., 2017; Gächter & Renner, 2018).
- In general, subjective audit rates may be affected by **three channels**: prior beliefs, empirical audit rates and the socially-learned value of the audit rate in its neighborhood.
- In a dynamic framework, the endogenous and **post-message** heterogeneous subjective audit rates can be formulated as:

\[
\hat{p}_{i,t+1} = \frac{1 - \omega}{2} \hat{p}_{i,t} + \frac{1 - \omega}{2} \frac{1}{m} \sum_{s=1}^{m} A_{i,t-s} + \omega (\alpha_i \tilde{p}_{i,t}), \quad (9)
\]

where \(\omega \in (0,1) \) is the weight given to the newly acquired information, \(A_{i,t-s} = 1 \) if agent \(i \) was audited at time \(t - s \) and zero otherwise, and \(\alpha_i > 0 \) is the income productivity level.
First-best outcomes and restorations

• Local-average game first-best outcomes and restorations are well-defined (Ushchev & Zenou, 2020).

Proposition (4)

Given a local-average game as previously characterized, the first-best outcome, \hat{p}^o, is a solution to:

\[
\hat{p} = (1 - \lambda)\alpha + \lambda G\hat{p} + \lambda G^\top (I - G)\hat{p},
\]

whose solution is unique, and it is given by:

\[
\hat{p}^o = \left[I + \frac{\lambda}{1 - \lambda} (I - G)^\top (I - G) \right]^{-1} \alpha.
\]

• The first-best outcome is expressed in function of the productivity (α), taste for conformity (λ) and network structure (G).
First-best outcomes and restorations

• When the players in a local-average game do not reach the first-best equilibrium, the social planner (tax authority) may try to restore it by subsidizing or taxing specific individuals.

Proposition (5)

The first-best outcome is restored when the social planner endows agents with the following subsidy/tax per unit of effort:

\[
S^o = \frac{\lambda}{1 - \lambda} G^\top (I - G) \hat{p}^o,
\]

where the optimal per-effort subsidy for each agent \(i \) is:

\[
S_i^o = \frac{\lambda}{1 - \lambda} \sum_{j \neq i} g_{ji} (\hat{p}_j^o - \bar{\hat{p}}_j^o).
\]
Maximizing the aggregate outcome

- The objective of the tax authority is to audit the set of taxpayers, $\mathcal{M} \subset \mathcal{N}$, such that the global subjective audit probability is maximized, and constrained by a finite number of audits $\lfloor np \rfloor$.

\[
\max_{\{\mathcal{M} \subset \mathcal{N}\}} \frac{1}{n} \sum_{i=1}^{n} \hat{p}_{i,t+1}(A_{i,t}, A_{-i,t}, \cdot)
\]

\[\text{s.t. } A_{i,t} = 1 \iff i \in \mathcal{M}, \]

\[A_{i,t} = 0 \iff i \notin \mathcal{M}, \]

\[|\mathcal{M}| \leq \lfloor np \rfloor, \tag{10}\]

where the individual subjective probability for all taxpayers at time $t + 1$ is dependent on whether they have been audited or not ($A_{i,t}$), and on who else was audited or not ($A_{-i,t}$).

- The **solution of the tax authority’s problem** is to compute the vector of optimal individual subsidies (S^o_i) and to audit the $\lfloor np \rfloor$ taxpayers with the maximal individual subsidy values.
Taxpayer simulation

• Let us define a _dynamic game_ in a taxpayer network with social interactions. First, agents and society are characterized and the social network is built. Then, the tax authority emits a message to incentive tax compliance.

• Each period, agents disclose a share of their income, may or may not be audited, and then exchange information with their neighbors and update their subjective audit rates.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Agents (taxpayers) are parameterized.</td>
</tr>
<tr>
<td>Step 2</td>
<td>The social network is built.</td>
</tr>
<tr>
<td>Step 3</td>
<td>The tax authority emits a threat-to-audit message.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Agents hold social interactions and share information.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Agents choose their optimal declared income.</td>
</tr>
<tr>
<td>Step 6</td>
<td>The tax authority applies its optimal audit strategy.</td>
</tr>
<tr>
<td>Loop</td>
<td>Go back to Step 4.</td>
</tr>
</tbody>
</table>
Taxpayer characterization

- Social networks of tax evasion consider **homophily** behavior and **cohesive** relations among individuals (Andrei et al., 2014; Gamannossi degl’Innocenti & Rablen, 2020). That is, taxpayers tend to form links with peers who are akin to them and with whom they share similar traits and characteristics.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Exog.</th>
<th>Endog.</th>
<th>Societal</th>
<th>Individual</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l): Earned income</td>
<td>(X)</td>
<td>(X)</td>
<td></td>
<td>(X)</td>
</tr>
<tr>
<td>(\tau): Tax rate</td>
<td>(X)</td>
<td>(_)</td>
<td>(X)</td>
<td>(_)</td>
</tr>
<tr>
<td>(\phi): Penalty rate</td>
<td>(X)</td>
<td>(_)</td>
<td>(X)</td>
<td>(_)</td>
</tr>
<tr>
<td>(m): Fiscal memory length</td>
<td>(X)</td>
<td>(_)</td>
<td>(X)</td>
<td>(_)</td>
</tr>
<tr>
<td>(n): Number of taxpayers</td>
<td>(X)</td>
<td>(_)</td>
<td>(X)</td>
<td>(_)</td>
</tr>
<tr>
<td>(\omega): Weighting parameter</td>
<td>(X)</td>
<td>(_)</td>
<td>(X)</td>
<td>(_)</td>
</tr>
<tr>
<td>(\theta): Taste for conformity</td>
<td>(X)</td>
<td>(_)</td>
<td>(X)</td>
<td>(_)</td>
</tr>
<tr>
<td>(p): True audit rate</td>
<td>(_)</td>
<td>(X)</td>
<td>(X)</td>
<td>(_)</td>
</tr>
<tr>
<td>(\hat{p}): Subjective audit rate</td>
<td>(X)</td>
<td>(_)</td>
<td>(X)</td>
<td>(_)</td>
</tr>
<tr>
<td>(d): Declared income</td>
<td>(X)</td>
<td>(_)</td>
<td>(X)</td>
<td>(_)</td>
</tr>
<tr>
<td>(q): Global subjective audit rate</td>
<td>(X)</td>
<td>(_)</td>
<td>(X)</td>
<td>(_)</td>
</tr>
</tbody>
</table>
Comparing audit strategies: convergence levels

- The proposed *Subsidy* strategy secured the highest average convergence level over 100 simulations per audit scheme.

Figure: Convergence level of the global subjective audit rate for different audit schemes: *Subsidy* (S), *Degree* (D), *Random* (R), *Intercentrality* (I), *Betweenness* (B), *Closeness* (C) and *Eigencentrality* (E).
Comparing audit strategies: outcome distributions

- The proposed *Subsidy* strategy obtained the highest convergence level distribution of the global (average) subjective audit rate at a 0.001% confidence level.

Figure: Distributions of the convergence levels of the global subjective audit rate for diverse audit strategies.
Testing parameter effects

(a) Number of taxpayers (n)

(b) Expected node-degree (μ)

(c) Constant density (δ)

(d) Attention to neighbors (ω)
Assessing robustness

(a) Initial subjective audit rate

(b) Taste for conformity (λ)

(c) Fiscal memory (m)

(d) Societal true audit rate (p)
Model extensions

- The proposed audit scheme would outperform random auditing and most policies if at least 35% of the links would be known.
- The tax authority could fully enforce the proposed optimal audit strategy if at least 70% of the links would be known.

(a) What if the tax authority cannot observe link directions?
(b) What if the tax authority’s omniscience is limited?

Figure: Which would be the cost of discovering all taxpayer links?
Limitations of network-based strategies

- If taxpayers do not pay **attention** to the threat-to-audit message they will not be *post-message* heterogeneous ($\alpha_i = \alpha_j$).
- If the taxpayer network lacks all **cohesiveness**, the strategy would be useless. Fortunately, social networks are cohesive (McPherson et al., 2001; Moody, 2001; Currarini et al., 2009).

(a) Attention placed to the threat-to-audit message

(b) Cohesive and non-cohesive taxpayer networks

Figure: Graphical representation of the two model limitations.
Policy implications and concluding remarks

- This paper proposes a two-step game-theoretic optimal audit strategy from the point of view of the tax authority.
 - First step: Credible threat-to-audit message.
 - Second step: Network-based audit policy.

1. The proposed enforcement regime targets taxpayers in function of their *productivity* and their position in the network.

2. To the best of my knowledge, it is the first audit strategy that is robust to individual and societal parameters, such as:
 - Number of taxpayers, network density, true audit rates...
 - Taxpayer heterogeneity: attentiveness, memory, endogenous p.
 - Expected and Non-expected utility theories.
 - Invariant to any plausible utility and payoff functions.

3. Notwithstanding, the costs and plausibility of observing a given fraction of taxpayer links remain open questions.
References I

References II

References III

References IV

References V

References VI

