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Abstract

Convergence toward the optimal capital accumulation path in infinite hori-

zon has always been tackled in the literature by means of the assumption

that individuals (or a central planner) are able to select the unique conver-

gent (saddle-)path among the infinitely many paths which satisfy the equi-

marginality condition of the intertemporal choice problem (the Euler’s condi-

tion). This is tantamount to assuming that individuals have ‘colossal’ rational

capabilities. Conversely, any minor deviation from the saddle-path would in-

evitably lead to a crash on a 0 per-capita consumption path. This paper aims

to show that this contraposition is false. An asymptotic convergence result

to the optimal equilibrium path will be obtained for an individual who plans

myopically, that is, that optimizes his present and future consumption lev-

els under a rudimentary hypothesis about future savings. He then partially

re-adjusts his choices in each subsequent period, like people normally do. A

similar result was already proved by the author for the central planner prob-

lem. In this paper, a ‘market’ solution is provided, following a temporary

equilibrium approach à la Hicks.

Keywords. Optimal capital accumulation; Ramsey-Cass-Koopmans model,

saddle-path (in)stability; myopic behaviour; temporary equilibrium.

J.E.L. codes. C61, D15, D50, E13, E21.
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1 Introduction

A wide range of theoretical and empirical problems has been faced in the

literature of the last 40-50 years on the basis of the analytical apparatus of

intertemporal choices. The first authors who considered the problem of in-

tertemporal choices are most likely von Böhm-Bawerk (1889) and Wicksell

(1901). Yet, the milestone in this literature was presented by Ramsey (1928),

who explicitly faced the problem of identifying the optimal level of savings, on

the basis of a suggestion by Keynes who clearly had in mind the costs (and the

benefits) of saving (see Ramsey (1928, p. 545)). Ramsey’s analysis has reached

contemporaneous analysis through the vulgate provided by Cass (1965) and

Koopmans (1964), known as the Cass-Koopmans-Ramsey model. A standard

formulation of this model is available in the majority of post-graduate text-

books of macroeconomics and growth.1 The intertemporal choice problem is

here formulated on an infinite horizon through an ‘optimal control’ problem

(Ramsey originally formulated his analysis in terms of calculus of variations).

Formally, the necessary conditions that identify the optimal path include a

‘transversality’ condition, since the optimal path takes the form of a saddle

path. Given an initial level of capital per-worker, the transversality condition

identifies the initial value of per-worker consumption needed to ‘drop’ the in-

dividual on the unique path which converges toward the long-run equilibrium.

All the other initial levels of per-worker consumption bring the system along

paths that sooner or later would lead to a 0 per-worker consumption. From an

economic stance, this amounts to assuming that the consumer (or the central

planner, if the problem is formulated in normative terms): i) calculates the

infinitely-many paths which satisfy Euler’s condition, that is, the marginality

equalities between the intertemporal rate of substitution and the interest fac-

tor (or, the marginal productivity factor in the normative problem), and ii)

selects among the (infinitely-many) paths the unique path which satisfies the

transversality condition.2 Should the consumer not hit ‘the right’ level of op-

timal consumption, the subsequent consumption levels deduced from Euler’s

condition would lead him to deviate definitively from the long-run equilibrium

path.

A quite peculiar argument is often invoked to justify the assumption that

individuals satisfy the transversality condition. The saddle path—which is

unstable from the mathematical point of view—is seen as the unique possi-

1See, for example, Blanchard and Fischer (1989), Azariadis (1993), Barro and Sala-i-Martin

(1995), Romer (1996), to name a few.
2In the case of the problem set on a finite horizon, the logic for finding the solution is more

explicit: given the level of capital which must be left in the last period, one calculates the optimal

consumption levels of the various periods by backward induction, i.e. starting from the last period.

In the infinite horizon problem the adoption of the transversality condition replicates a similar

argument: among the infinitely many paths, it selects the unique path which keeps consumption

positive in the long-run.
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bility for rational agents to coordinate among themselves. In a stable node,

or in a focus, where all paths converge to the steady state equilibrium, agents

would be unable to coordinate on the same path. On the contrary, when there

exists a unique convergent path—like in the case of the saddle-path—rational

agents know that the only way to avoid crashing on a zero-consumption path

is to ‘jump’ squarely on it, thus engendering the convergence to the steady

state of the system (on this, see Begg (1982, pp. 31-41)). This interpretation

of the transversality condition requires a tremendous ‘amount of rationality’

by individuals (not surprisingly ‘saddle-path stability’ is at the basis of the

strongest notion of rational expectations: the assumption of perfect foresight).

(TO BE VERIFIED) Conversely, should the individual fail to identify the ini-

tial value of the ‘jump’ variable, the entire economy would be led irreparably

away from the convergent path.

We will see in this paper that this contraposition is false. We will prove

the opposite, that convergence to the steady state equilibrium can be obtained

without assuming perfect foresight. In order to prove this, we will consider

an individual who plans myopically: he optimizes his present and future con-

sumption levels under a rudimentary hypothesis about future savings. Then,

as time goes by, he re-adjusts his past choices in each subsequent period, like

people normally do.

Part of the results here presented have been the object of a previous in-

vestigation (see Bellino (2013)), where the optimal path of the system is

approached by a central planner in a similar way. In this paper I will present

the ‘market side’ of the process. Clearly, this view will lead us from the in-

tertemporal notion of equilibrium, inherent in the Cass-Koopmans-Ramsey

model, to a temporary notion of equilibrium as described by Hicks (1939).

2 Description of the economic system

Consider an economic system where only one commodity is produced, con-

sumed and employed jointly with labour as a capital good in its own produc-

tion; the capital good depreciates at the rate µ ∈ [0, 1]. Time is considered

a discrete variable, making it easier to analyse the evolution of the system

as a sequence of events.3 We define ‘period t’ the half-open time interval

[t, t + 1) between dates t and t + 1. Consumers live forever, and they are all

equal. We can thus study the behaviour of the representative consumer. To

simplify, let us suppose that the population remains constant. Consumer’s

preferences have a cardinal representation,4 being described by a utility func-

tional, U =
∑∞

t=0

(
1

1+θ

)t
u(ct), which is constituted by the sum of discounted

3For discrete time versions of the Ramsey model see, for example, Azariadis (1993, chs. 7 and

13), or Stockey and Lucas (1989, ch. 2).
4See Koopmans (1965, section I); see also Hicks (1965, ch. XXI, in particular pp. 256-7 and

Appendix E).
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utilities achieved in each period, u(ct), where ct is the consumption level in

period t, 1
1+θ is the discount factor of the future utility, and θ > 0 is the rate

of time preference. We suppose that u : R+ 7→ R is a twice continuously dif-

ferentiable, increasing and concave function; hence u′(ct) > 0 and u′′(ct) < 0.

For simplicity, let’s assume also limct→0+ u
′(ct) = +∞.

The technology of the representative firm is represented by a continuously

differentiable, homogeneous of the first degree production function, F (K,L),

defined for K ≥ 0 and L ≥ 0; as usual, FK > 0, FL > 0, FKK < 0 and

FLL < 0. Let

r := Q/P and w := W/P,

where Q is the rent price of the good (to be employed as capital good), P is

the unit price of the good, and W is the nominal wage rate. Hence, r is the

rate of return of capital and w is the real wage rate.

3 The behaviour of the representative firm

Each (representative) firm maximizes extra-profits in each period;

max
K,L

Π = P · F (K,L)− µPK −QK −WL, (1)

where µ is the annual depreciation rate of capital. The first order conditions

of (1) are

P · FK − µP = Q (2a)

P · FL = W. (2b)

As F (K,L) is homogeneous of the first degree, F (K,L)/L ≡ f(k), where k =

K/L, FK ≡ f ′(k) and, thanks to Euler’s theorem we have FL ≡ f(k)−kf ′(k).

Thus, the first order condition (2) can be written as

f ′(k)− µ = r (3a)

f(k)− kf ′(k) = w. (3b)

Suppose that when t = 0, the capital labour ratio k0 is given, i.e.

k0 = k̄0 < k∗, (4)

so that, r0 and w0 are determined by (3):

r̄0 = f ′(k̄0)− µ (5a)

w̄0 = f(k̄0)− k̄0f ′(k̄0). (5b)

4 The behaviour of the representative consumer

In an intertemporal setting, the identification of an optimal consumption path

requires that in the first period, t = 0, the consumer chooses the present con-

sumption level and all future consumption levels. Here we propose an alter-

native to facing this problem, which is still based on ‘rationality’ arguments,

4



but it does not require rationality that extends in such detail over each period

of the infinite horizon.

Rather than mapping the ‘realistic’ behaviour of the representative con-

sumer, our purpose here is to show that a ‘small amount’ of rationality is

sufficient to channel the system towards its long-run path. We can thus fo-

cus on a simple way of facing future consumption choices. We will suppose

that the consumer chooses current consumption and savings under the (provi-

sional) assumption of zero net savings in all future periods. This conventional

assumption provides us a way to weighting the costs and benefits of present

savings in a simple manner. In fact, the assumption of zero future net savings

(provisionally) puts the system on a steady path. This allows us to optimize

the benefits of current savings on future utility without the need to choose

at present the savings levels of each future period. But, since the assumption

of zero future net savings is provisional, nothing prevents the consumer from

relaxing it in each future period, should he find it convenient to do so (and

he would).

4.1 Consumer decision for period [0, 1)

Let

aτ = kτ − bτ , τ = 0, 1, 2, · · · (6)

the amount of net activity owned by the consumer in period τ and bτ the

debt of the consumer. Given r̄0 and w̄0, for any given r1 and w1 the consumer

chooses his consumption path by solving:5

maxU0 = u(c0) +
u(c1)

1 + θ
+

u(c2)

(1 + θ)2
+

u(c3)

(1 + θ)3
+ · · · (7a)

s.v. c0 = w̄0 + r̄0a0 − a1 + a0 (7b)

cτ = wτ + rτa1, τ = 1, 2, 3, . . . (7c)

As it appears from the set of constraints, consumers need to know future

rental rates of capital, rτ , and future wage rates wτ , for τ = 1, 2, 3, . . .. The

simplest expectation they can express is that the set of prices determined by

the market for the next period, i.e. r1 and w1, will remain constant during

the entire infinite future—even if they may differ from the present levels, r̄0

and w̄0: this is consistent with the assumption of a stationary set of future

individual consumption and production plans.6 This means that a decision

5Constraints (7b) and (7c) are written in terms of relative prices.
6In this regard Hicks wrote:

‘[a] stationary state is in full equilibrium, not merely when demands equal supplies at

the currently established prices, but also when the same prices continue to rule at all

dates—when prices are constant over time’: Hicks (1939, p. 132).

Again,

‘If plans are mostly of a fairly stationary type, so that most people are planning to
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will be taken on the basis of the assumptions that

rτ = r1 and wτ = w1, τ = 1, 2, 3, . . . , (8)

and that consumers will consider prices r1 and w1 as parameters. Thanks to

(7b), (7c) and (8) the objective function can be re-written as follows:

U0 = u(w̄0 + r̄0a0 − a1 + a0) +
u(w1 + r1a1)

1 + θ
+
u(w1 + r1a1)

(1 + θ)2
+

+
u(w1 + r1a1)

(1 + θ)3
+ · · · = u(w̄0 + r̄0a0 − a1 + a0) +

u(w1 + r1a1)

θ
,

and the consumer’s program becomes

max
a1

u(w̄0 + r̄0a0 − a1 + a0) +
u(w1 + r1a1)

θ
. (9)

The first order condition of (9) is

dU0

da1
= 0, ⇔ u′(w̄0 + r̄0a0 − a1 + a0)(−1) +

u′(w1 + r1a1)

θ
r1 = 0. (10)

that is,

u′(w̄0 + r̄0a0 − a1 + a0) =
u′(w1 + r1a1)

θ
r1. (11)

The second order condition of (9) is

d2U0

da21
< 0, ⇔ u′′(w̄0 + r̄0a0 − a1 + a0) +

u′′(w1 + r1a1)

θ
r21 < 0, (12)

which is always satisfied as u′′(·) < 0.

4.2 Temporary equilibrium for period [0, 1)

Since consumers are equal, their choices will be identical. Though each con-

sumer can freely borrow and lend, no consumer will actually lend or borrow

in equilibrium (if someone borrows someone else must lend; but this would

contradict the constraint that consumers make the same choices). Thus, in

equilibrium,

bτ = 0, τ = 1, 2, 3, . . . ,

and by definition (6) we have

aτ = kτ , τ = 0, 1. (13)

Observe that this is a characteristic of equilibrium, not an a priori constraint

imposed on the maximization problem.

buy and sell much the same quantities in future periods as in the current period, not

much disequilibrium due to inconsistency will arise, so long as they merely expect a

continuance of current prices’: Hicks (1939, p. 136)
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In particular,

a0 = k0 = k̄0, (14)

Thanks to (3) written for τ = 0 and τ = 1, and thanks to (13), the first

order condition (11) can be written as:

u′[f(k̄0)− µk̄0 − (k1 − k̄0)] = u′[f(k1)− µk1]
f ′(k1)− µ

θ
. (W0)

(W0) is an equation in k1; it is a particular case of equation (Wt) (see Section

5 below) where parameter kt is fixed at kt = k̄0. Hence, by applying Lemma

1 below, (W0) has a unique solution, k•1, such that

k̄0 < k•1 < k∗. (15)

After substituting the equilibrium level of the capital/labour ratio of pe-

riod [0, 1) into (3) we obtain the equilibrium levels of the remaining variables:

r�1 = f ′(k•1)− µ (16a)

w�1 = f(k•1)− k•1f ′(k•1). (16b)

4.3 Consumer decision and temporary equilibrium for period

[1, 2)

On the basis of what has been planned in period [0, 1), at the beginning of

period [1,2) consumers could consume

cτ = w�1 + r�1k
�
1 = f(k•1)− µk•1, τ = 1, 2, 3, . . . .

for all future periods. In this case the rental rate of capital and the wage rate

would remain exactly at levels (16). Nevertheless, they may wish to revise

their previously selected consumption path. Analogously to what was done

in period [0, 1), their revised choice can be found by solving the following

problem:

maxU1 = u(c1) +
u(c2)

1 + θ
+

u(c3)

(1 + θ)2
+

u(c4)

(1 + θ)3
+ · · · (17)

s.v. c1 = w�1 + r�1a1 − a2 + a1 (18)

cτ = w2 + r2a2, τ = 2, 3, 4, . . . (19)

Observe that as soon as consumers revise their choices, their steady expecta-

tion about future prices is replaced by another set of wages and profit rates,

w2 and r2, different from the wage rate and the profit rate of period 1, but

still constant from period 2 onwards. This is because consumers are planning

a path which will be in a steady state from period 2 onwards.
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After substituting the constraints, we obtain the following maximization

problem:

max
a2

u(w�1 + r�1a
�
1 − a2 + a�1) +

u(w2 + r2a2)

1 + θ
+

+
u(w2 + r2a2)

(1 + θ)2
+
u(w2 + r2a2)

(1 + θ)3
+ · · ·

that is,

max
a2

u(w�1 + r�1a
�
1 − a2 + a�1) +

u(w2 + r2a2)

θ
, (20)

whose first order condition is

u′(w�1 + r�1a
�
1 − a2 + a�1) =

u′(w2 + r2a2)

θ
r2. (21)

For the same reasons seen before (all consumers are equal: there are no loans

or borrowings in equilibrium), we have

a2 = k2. (22)

After substituting (3) written for τ = 1 and τ = 2, and equalities (13) and

(22) into (21) we obtain

u′[f(k•1)− µk•1 − (k2 − k•1)] = u′[f(k2)− µk2]
f ′(k2)− µ

θ
. (W1)

(W1) is a particular case of equation (Wt) (see Section (5)), where parameter

k1 is fixed at k•1. By applying Lemma 1 below, (W1) has a unique solution,

k•2, such that

k•1 < k•2 < k∗. (23)

After substituting the equilibrium level of the capital/labour ratio of period

[1, 2) into (3) the equilibrium levels of the remaining variables are obtained:

r�2 = f ′(k•2)− µ (24a)

w�2 = f(k•2)− k•2f ′(k•2). (24b)

Remark As in equilibrium consumers do not borrow or lend among them-

selves (bτ = 0), there is no necessity to impose a transversality condition (or

a no-Ponzi game condition) in the consumer’s problem.

4.4 Consumer decision and temporary equilibrium for period

[t, t+ 1)

In general, for any period [t, t + 1), and for any given initial level of capi-

tal/labour ratio, kt, on the basis of the consumers’ optimal behaviour and
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of the market temporary equilibrium conditions, we deduce that the capi-

tal/labour ratio for period t+ 1 is the solution of the following equation:7

u′[f(kt)− µkt − (kt+1 − kt)] =
u′[f(kt+1)− µkt+1]

θ
[f ′(kt+1)− µ]. (Wt)

The sequence of equilibria thus described are temporary equilibria, in the

sense described by Hicks (1939, chapter X), that is, market clearing equilibria

in the current market based on a set of future plans taken by the representative

consumer. In each period t the consumer makes his optimal, current, choice

assuming a stationary behaviour for production and income for all future

periods. Once t + 1 is reached, he perceives that the assumed stationary

behaviour is not his optimal choice for period t + 1.8 He thus revises his

choice for that period on the basis of a stationary income and consumption

path assumed for the future (t+2, t+3, etc.). The actual path of the economy

is represented by the set of current market clearing equilibria obtained in the

manner described above.

5 Convergence to the Ramsey modified golden rule

In this section we will study the analytical properties of sequence {k•t }∞t=1,

generated by equation (Wt).9

Proposition 1. The capital/labour ratio k = k∗, solution of the Ramsey

modified golden rule,

f ′(k∗) = θ + µ, (25)

is the unique steady state of sequence {k•t }∞t=1.

Proof. A steady state of {k•t }∞t=1 is a value of k such that kt = kt+1 = k.

Substituting into (Wt) we get: u′[f(k)−µk− (k−k)] = u′[f(k)−µk]
θ [f ′(k)−µ],

that is, 1 = [f ′(k)− µ]/θ, which coincides with (25), whose unique solution is

k = k∗. Let

gkt(kt+1) := u′[(1− µ)kt + f(kt)− kt+1]

and

h(kt+1) :=
u′[f(kt+1)− µkt+1]

θ
[f ′(kt+1)− µ].

g is a function of kt+1 parametrized by kt.

7Equation (Wt) coincides with the equation describing the centralized solution of a planner who

optimizes sequentially, in a way similar to that adopted here by the representative consumer (see

Bellino (2013).
8According to Hicks’s (1939, p. 134) classification, an incorrect forecast of its own wants was

the cause originating this disequilibrium.
9The proofs here presented follow closely those provided in Bellino (2013) for the planner’s

solution. They are reproduced here for convenience.
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−
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+
f

(k
1 t
)

(1
−
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)k
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+
f

(k
2 t
)

(1
−
µ

)k
3 t

+
f

(k
3 t
)

k1t < k2t < k3t

Figure 1: Curves gkt(x)

Properties of g Parameter kt defines a sheaf of curves. Each of these

curves is defined, continuous and strictly increasing for kt+1 ∈ Gkt = [0, (1−
µ)kt + f(kt)] (as u is decreasing). In the first quadrant, each of these curves

has a finite and positive interception with the vertical axis, u[(1−µ)kt+f(kt)],

and a vertical asymptote given by kt+1 = (1− µ)kt + f(kt). When parameter

kt increases, the interception with the vertical axis decreases, the abscissa of

the vertical asymptote increases, and curve gkt(·) shifts downward, that is,

gkt(k) > gkt+1(k) if kt < kt+1 (26)

for those k where both are defined. Hence, curves gkt(·) never intersect them-

selves; they appear as in Figure 1.

Properties of h Function h(kt+1) is defined where f(kt+1) − µkt+1 > 0,

that is, for 0 < kt+1 < k̃, where k̃ is that level of k defined by f(k̃) = µk̃

which makes the net product equal to zero. Moreover,

lim
kt+1→0+

h(kt+1) = +∞ (27)

lim
kt+1→k̃−

h(kt+1) = −∞ (28)

as f ′(k̃)− µ < 0. Define kg as that level of k for which

f ′(kg) = µ : (29)
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Figure 2: Curve h(x)

it is the so called golden rule capital/labour ratio: see Barro and Sala-i-Martin

(1995, ch. 1). As f is decreasing, from (25) and (29) we deduce

k∗ < kg. (30)

We have:

h(kg) = 0 (31)

and
dh

dkt+1
< 0 (32)

as u′′ < 0 and f ′′ < 0 in 0 < kt+1 < k̃. Curve h(kt+1) appears as in Figure 2.

Lemma 1. Given kt ∈ (0, k∗):

1. there exists a unique k•t+1 ∈ (0, k̂) which solves (Wt), where k̂ = min[(1−
µ)kt+f(kt), kg], that is, there exists a unique k•t+1 which solves (Wt) on

the interval where both gkt(x) and h(x) are defined and positive;

2. k•t+1 > kt;

3. k•t+1 < k∗.

Proof. 1. Consider equation gkt(kt+1) = h(kt+1) on the restricted domain

kt+1 ∈ [0, k̂]. For kt+1 → 0+ we have gkt(0
+) = gkt(0) = u′[(1 − µ)kt +

f(kt)]; hence

0 < gkt(0
+) < +∞. (33)

Moreover, (27) means

h(0+) = +∞. (34)
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Figure 3: Case 1a: (1− µ)kt + f(kt) < kg

Hence, by (33) and (34) it follows that

gkt(0
+) < h(0+). (35)

Since kt+1 = (1− µ)kt + f(kt) is the vertical asymptote of gkt(kt+1), we

have

gkt{[(1− µ)kt + f(kt)]
−} = +∞. (36)

In order to compare gkt and h at the other estreme of the domain, k̂,

three cases must be distinguished:

(a) If

(1− µ)kt + f(kt) < kg, (37)

then k̂ = (1− µ)kt + f(kt) and curves gkt(kt+1) and h(kt+1) appear

as in Figure 3. As kt > 0 and from (37) we see that h(x) is finite

and positive at kt+1 = (1− µ)kt + f(kt), that is,

h[(1− µ)kt + f(kt)] <∞. (38)

Hence by (36) and (38) we obtain

gkt{[(1− µ)kt + f(kt)]
−} > h[(1− µ)kt + f(kt)]. (39)

By continuity and thanks to inequalities (35) and (39), we can con-

clude that there exists a unique

k•t+1 ∈ (0, (1− µ)kt + f(kt)), that is, k•t+1 ∈ (0, k̂) (40)

which satisfies (Wt) (see Figure 3).
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Figure 4: Case 1b: kg < (1− µ)kt + f(kt)

(b) If

kg < (1− µ)kt + f(kt), (41)

then k̂ = kg and curves gkt(kt+1) and h(kt+1) appear as in Figure

4. Thanks to (41) we deduce that gkt(kt+1) is finite and positive at

kt+1 = kg, that is

0 < gkt(kg) < +∞. (42)

On the other hand (31) gives us

h(kg) = 0. (31′)

Hence by combining (42) and (31′) it follows that

gkt(kg) > h(kg). (43)

By continuity and thanks to inequalities (35) and (43), we can con-

clude that there exists a unique

k•t+1 ∈ (0, kg), that is, k•t+1 ∈ (0, k̂) (44)

which satisfies (Wt) (see Figure 4).

(c) If

kg = (1− µ)kt + f(kt), (45)

then k̂ = kg = (1 − µ)kt + f(kt) and curves gkt(kt+1) and h(kt+1)

appear as in Figure 5. In this case

gkt(k̂
−) ≡ gkt{[(1− µ)kt + f(kt)]

−} = +∞ (46)

and

h(k̂) ≡ h(kg) = 0. (47)
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Figure 5: Case 1c: kg = (1− µ)kt + f(kt)

Hence by (46) and (47) it follows that

gkt(k̂) > h(k̂). (48)

By continuity and thanks to inequalities (35) and (48), we can con-

clude that there exists a unique

k•t+1 ∈ (0, kg), that is, k•t+1 ∈ (0, k̂) (49)

which satisfies (Wt) (see Figure 5).

2. Evaluate functions gkt(kt+1) and h(kt+1) at kt+1 = kt:

gkt(kt) = u′[(1− µ)kt + f(kt)− kt] = u′[f(kt)− µkt]

h(kt) =
u′[f(kt)− µkt]

θ
[f ′(kt)− µ]

hence gkt(kt) < h(kt) as
f ′(kt)− µ

θ
> 1 for kt < k∗.

Curves gkt(kt+1) and h(kt+1) appear as in Figure 6: hence the solution

k•t+1 of (Wt) must thus lie on the right of kt.

3. Draw curves gkt(kt+1) and h(kt+1) on the same graph (see Figure 7).

Two cases must be distinguished.

(i) If (1−µ)kt+f(kt) ≤ k∗, due to (30) we are under case 1a considered

in the proof of this Lemma. Thus k•t+1 < (1 − µ)kt + f(kt); hence

k•t+1 < k∗ follows (see Figure 7((i)).

(ii) If (1−µ)kt+f(kt) > k∗, evaluate gkt(kt+1) and h(kt+1) at kt+1 = k∗:

gkt(k
∗) = u′[f(kt)− µkt − (k∗ − kt)]

h(k∗) =
u′[f(k∗)− µk∗]

θ
[f ′(k∗)− µ] = u′[f(k∗)− µk∗] due to (25) .
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As kt < k∗, then f(kt) − µkt − (k∗ − kt) < f(k∗) − µk∗; as u′

is decreasing, then gkt(k
∗) > h(k∗). Curves gkt(kt+1) and h(kt+1)

appear thus as in Figure 7((ii)); hence the solution k•t+1 of (Wt)

must lie on the left of k∗.

This completes the proof.

Now, we are going to show that if k0 = k∗, equation (Wt) defines a constant

sequence: kt = k∗, t = 1, 2, 3, ....

Lemma 2. If kt = k∗, there exists a unique k•t+1 which solves (Wt): it is

k•t+1 = k∗.

Proof. Thanks to equation (25) it is straightforward to verify that equation

gk∗(kt+1) = h(kt+1) (W∗)

is satisfied by k•t+1 = k∗. Moreover, the left-hand member of (W∗) is a mono-

tonically increasing function of kt+1, while the right-hand member of (W∗) is

a monotonically decreasing function of kt+1. Hence k∗ is the unique solution

of (W∗).

Lemmas 1 and 2 entail that, given k0 ∈ (0, k∗], a sequence {k•t+1}∞t=0

contained in (0, k∗] is univocally defined by recurrence by equation (Wt).

Lemma 3. k = k∗ is the unique steady-state of sequence {k•t+1}∞t=0.

Proof. A steady-state of {k•t+1}∞t=0 is a value of the capital/labour ratio such

that kt = kt+1 = k. Substituting it into (Wt), we obtain u′[f(k)− µk − (k −
k)] = u′[f(k)−µk]

θ [f ′(k)−µ] which, after simplification, reduces to, [f(k)µ]/θ =

1, whose unique solution is k = k∗ (see equation (25)).

Proposition 2. If k0 = k̄0 < k∗, the sequence {k•t }∞t=1 of capital/labour ratios

converges monotonically to the steady state k∗ defined by the Ramsey modified

golden rule (25).

Proof. By Lemma 1, if k̄0 < k∗ sequence {k•t }∞t=1 is monotonically increasing

(thanks to item 2) and upper bounded by k∗ (thanks to item 3). Hence it must

converge to some k′,

lim
t→∞

k•t = k′. (50)

In order to prove that k = k∗ observe that, by definition, the elements k•t
of the sequence satisfy equations (Wt). Consider the limit for t→∞ of (Wt):

lim
t→∞

u′[f(kt)− µkt − (kt+1 − kt)] = lim
t→∞

u′[f(kt+1)− µkt+1]

θ
[f ′(kt+1)− µ].

Thanks to the continuity of functions u′, f and f ′ we can write

u′
[
f
(

lim
t→∞

k•t

)
− µ lim

t→∞
k•t −

(
lim
t→∞

k•t+1 − lim
t→∞

k•t

)]
=

u′
[
f
(

lim
t→∞

k•t+1

)
− µ lim

t→∞
k•t+1

]
θ

[
f ′
(

lim
t→∞

k•t+1

)
− µ

]
.
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which, thanks to (50), can be written as

u′[f(k′)− µk′ − (k′ − k′)] =
u′[f(k′)− µk′]

θ
[f ′(k′)− µ].

After simplification, this equation in k′ reduces to [f ′(k)µ]/θ = 1, whose

unique solution is k = k∗ (see equation (25)). This completes the proof.

6 Concluding remarks

The convergence of the sequence of temporary market equilibria to the Ram-

sey steady state path provides us with an insight on the ‘amount of rationality’

needed to drive an economic system à la Ramsey towards its long-run equilib-

rium. The Ramsey problem of identifying the optimal consumption/savings

path is usually faced, in the Cass-Koopmans version, by means of an intertem-

poral equilibrium approach. In the initial period, the representative consumer

must solve his trade-off between consumption and savings for the present pe-

riod as well as for the (infinitely many) subsequent periods. For this purpose,

he must exclude the infinitely-many paths which diverge from the saddle-path

(in analytical terms, he must selects that unique consumption-savings path

which satisfies the transversality condition from the infinitely-many paths

solving the Eulero equation). Under the intertemporal equilibrium setting,

the representative consumer must display an enormous computing ability. In

other terms, he is not allowed to divert from the saddle path, not even by

a little. A small deviation would in fact sooner or later entail crashing on a

zero-consumption path.

In the present paper, the Ramsey problem has been settled in the tem-

porary equilibrium framework. As we have seen, the representative consumer

optimizes his present and future consumption levels using a rudimentary hy-

pothesis on future savings. He then re-adjusts his past choices in each subse-

quent period, like people normally do. This short-term optimizing behaviour

allows individuals to move towards Ramsey’s steady state equilibrium.
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